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Introduction 
 
Our ability to contain the coronavirus pandemic depends on being able to forecast potential 
outbreaks. 
 
In this work, we develop scientifically-driven machine learning models to accurately predict the 
spread of Covid-19 infections using real-time data. 
 
We collect and organize various data sets that may bear on the spread of Covid-19 -- daily case 
reports, movement trends, weather reports, and economic changes. Our models use this data to 
make predictions about future increases in Covid-19 cases at the county, state, and national 
levels in the United States.  
 

Problem Description 
 
The official CDC Covid-19 forecast​[1]​ uses an ensemble of models to predict the number of new 
cases that are likely to arise in different geographic locations. The CDC Covid-19 forecast 
predicts the number of new Covid-19 cases per week for the next 4 weeks at the national, state, 
and county levels. It currently combines the forecasts from dozens of modeling groups. 
 
To aid in this effort, we develop and operationalize an accurate Covid-19 forecast based on data 
from Delphi COVIDcast​[9]​, JHU CSSE​[10]​, The COVID Tracking Project​[11]​, Apple Mobility Trend 
Reports​[12]​, Google COVID-19 Community Mobility Reports​[13]​, and C3 AI Covid 19 Data Lake​[14]​. 
Our forecast is competitive and outperforms some well-established models in backtests. We 
visualize this data using an interactive web application.  
 

Authors Areum Jo (​areumjo1@gmail.com​), 
Jae Cho (​jaehun.cho@gmail.com​) 

Date 2020-11-18 

Last Update 2021-01-10 

mailto:areumjo1@gmail.com
mailto:jaehun.cho@gmail.com


Broad Approach 
 
Coronavirus is thought to spread from person to person. A typical case starts with a person 
coming into contact with a patient, who may not have symptoms. The virus has a chance to 
spread to the person during each contact. When the virus is successful, the person becomes 
infected and infectious to other people. The virus spreads exponentially in this way. 
 
Epidemiological models use the structural knowledge of the spread of the virus to make 
predictions using the number of infected individuals and the number of transmittive contact. But 
it is difficult to measure how many infected individuals there really are and with whom they had 
close contact. Instead, we only have some imperfect measurements of a set of inputs that may 
have bearing on these components.  
 
In order to learn the useful relations between variables with limited data, we use machine 
learning models with scientifically-driven features. We find that temporal and spatial features of 
the daily case reports and movement trends data predicts future Covid-19 cases. Our models 
use these to make predictions for all counties, states, and the country for the next 4 weeks. 
 

Technical Details of the Approach 
 
We model the number of new cases per week in the next week for region , , usingi (t )yi + 1  
scientifically-driven features of the data, .(t)X   
 
We develop the following features:  
 

● Sum of new cases per 100,000 people per week​[9, 10, 11]​.  
● Sum of new hospitalizations per licensed beds per week​[9,10,11]​. 
● Average movement trends​[12, 13]​. 
● Social distancing metrics​[9]​. 
● Google search trends​[9]​. 

 
We impute features with top-down and bottom-up hierarchical aggregations and Census 
Core-Based Statistical Area aggregations​[13]​. We stabilize features by applying winsorizations 
across hierarchies. We also use one-week lagged versions of each of these features to capture 
their dynamics. We did not include other features because they did not work consistently or 
intuitively or because they did not help improve the predictions when used with the features 
above.  
 
We develop forecasts using different machine learning models. The models are optimized using 
the data set of  and  from a moving window of  training weeks,(t)X (t )yi + 1 N train  

, and evaluated on a moving window of  testing weeks,t , t )[ − N train − N test  − N test N test  



 in a walk-forward backtest from 2020-06-15 to 2020-09-14. We reserve 8 instancest , t][ − N test   
from 2020-09-14 to 2020-11-02 for validation. We find that a linear regression of the features 
against new cases per 100,000 people for each horizon and for each level generates the best 
results in the back tests. These predictions are multiplied by the population in the region and 
combined together to produce the final forecast. The final forecast uses the optimized models 
trained on  to predict . [t , t]t ∈  − N train  (t 1)yi +    
 

Results 
 
We compare our forecast to all the models from the CDC Covid-19 forecasts and show that our 
forecast is competitive and outperforms some well-established forecasts in the backtest. We 
backfilled our forecast by training on data up to the forecast date and making predictions with 
the inputs available on the forecast date in the validation period from 2020-09-14 to 2020-11-02. 
We used the historical forecasts from the Covid-19 Forecast Hub​[2]​ in the same period.  
 
Table 1.​ Forecasting accuracy of forecasts between 2020-09-14 and 2020-11-02. We computed 
the mean absolute error using the daily reports containing the cases data from the JHU CSSE 
group as the gold standard reference for the cases in the US. We normalized all the numbers by 
the COVIDhub-baseline number. The normalized mean absolute error numbers for each of the 
forecast horizons are shown below (lower is better). 
 
 country county state 

target 1 2 3 4 1 2 3 4 1 2 3 4 

OneQuietNight 0.72 0.93 0.97 0.91 0.95 0.95 0.93 0.93 0.86 0.83 0.84 0.88 

COVIDhub-baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

CEID-Walk 1.00 1.00 1.00 0.99 1.01 1.01 1.01 1.00 1.00 1.01 1.01 1.01 

CMU-TimeSeries nan nan nan nan 6.24 6.51 7.19 7.73 nan nan nan nan 

CU-nochange 0.99 0.70 0.66 0.62 1.19 1.23 1.32 1.45 1.09 1.01 1.02 1.04 

CU-scenario_high 0.98 0.62 0.56 0.61 1.19 1.24 1.33 1.41 1.09 0.98 0.96 0.99 

CU-scenario_low 1.03 0.83 0.84 0.87 1.19 1.24 1.31 1.37 1.11 1.08 1.12 1.19 

CU-scenario_mid 0.98 0.66 0.75 0.75 1.19 1.23 1.25 1.23 1.09 0.99 0.99 0.98 

CU-select 0.98 0.66 0.75 0.75 1.19 1.23 1.25 1.23 1.09 0.99 0.99 0.98 

Columbia_UNC-SurvCon 0.61 0.53 0.63 0.87 nan nan nan nan nan nan nan nan 

Covid19Sim-Simulator 1.21 1.09 1.03 0.99 nan nan nan nan 1.24 1.16 1.13 1.12 

CovidAnalytics-DELPHI 2.91 1.96 1.62 1.46 nan nan nan nan 2.68 1.97 1.72 1.64 

DDS-NBDS 0.65 0.56 0.64 0.80 nan nan nan nan 1.08 0.87 0.92 1.14 

Geneva-DetGrowth 0.82 nan nan nan nan nan nan nan 0.89 nan nan nan 



 
As shown in Table 1, our OneQuietNight forecast generates accurate results across all horizons 
in the backtest. Our approach is different from the empirical models and dynamical models that 
are commonly used in the Covid-19 forecasts in that it does not make any forward-looking 
assumptions about the factors affecting transmission. Instead, it uses the historical dynamics 
between the number of cases and people’s movement levels to make the forecasts. This tends 
to produce waves of Covid-19 peak cases rather than a continued increase over a four week 
time frame based on the historical patterns.  
 

Out of Sample Results (Update on 2021-01-10) 
 
We update the national model on 2021-01-10 based on out of sample results. The county and 
state level models were left as is.  
 
We compare our out of sample forecasts to all models from the CDC Covid-19 forecasts in the 
time period from 2020-11-21 to 2020-01-09 in Table 2. These consists of four weeks of 
observations for the four week horizon, five weeks of observations for the three week horizon, 
and so on. While our model retained performance at the county and at the state level, our model 
had big misses at the country level.  
 
Table 2.​ Forecasting accuracy of forecasts between 2020-11-21 and 2020-01-09. We computed 
the mean absolute error using the daily reports containing the cases data from the JHU CSSE 

IowaStateLW-STEM 1.10 1.17 1.16 1.14 1.26 1.14 1.12 1.11 1.36 1.33 1.32 1.31 

JCB-PRM 0.91 0.88 0.89 0.90 nan nan nan nan 1.05 0.97 0.96 0.98 

JHUAPL-Bucky 1.01 0.96 0.93 0.93 1.22 1.18 1.17 1.17 1.13 1.02 1.01 1.02 

JHU_IDD-CovidSP 2.43 1.61 1.31 1.18 1.71 1.36 1.21 1.13 2.19 1.54 1.30 1.19 

Karlen-pypm 0.80 0.72 0.68 0.63 nan nan nan nan 1.05 0.89 0.85 0.90 

LANL-GrowthRate 1.31 1.34 1.29 1.29 1.17 1.22 1.23 1.26 1.19 1.24 1.30 1.35 

LNQ-ens1 0.54 0.67 0.75 0.83 0.87 0.89 0.91 0.93 0.77 0.80 0.84 0.91 

OliverWyman-Navigator 0.65 0.61 0.59 nan 1.05 1.03 1.01 nan 0.98 0.87 0.82 nan 

PandemicCentral-USCounty nan nan nan nan 1.85 1.53 nan nan nan nan nan nan 

QJHong-Encounter 0.78 0.74 0.76 0.77 nan nan nan nan nan nan nan nan 

RobertWalraven-ESG nan nan nan nan nan nan nan nan 1.39 1.26 1.27 1.30 

UCLA-SuEIR 1.16 1.28 1.27 1.26 2.43 2.90 2.97 2.95 1.30 1.50 1.49 1.46 

UMass-MechBayes nan nan nan nan 3.81 4.06 4.24 4.63 nan nan nan nan 

UMich-RidgeTfReg 0.69 0.76 0.84 0.91 nan nan nan nan 1.14 1.03 1.01 1.06 

USC-SI_kJalpha 0.88 0.97 1.04 1.11 1.18 1.15 1.17 1.19 0.99 1.00 1.06 1.13 

UVA-Ensemble nan nan nan nan 1.34 1.18 1.08 1.08 nan nan nan nan 

COVIDhub-ensemble 1.00 0.95 0.94 0.95 0.99 1.03 1.05 1.06 1.04 1.04 1.04 1.06 



group as the gold standard reference for the cases in the US. We normalized all the numbers by 
the COVIDhub-baseline number. The normalized mean absolute error numbers for each of the 
forecast horizons are shown below (lower is better). 
 

 country county state 

target 1 2 3 4 1 2 3 4 1 2 3 4 

OneQuietNight-ML 0.82 1.85 3.93 5.28 0.93 0.87 0.92 0.98 1.03 0.91 1.11 1.30 

COVIDhub-baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

BPagano-RtDriven 1.26 1.09 1.36 0.76 nan nan nan nan 1.44 1.42 1.34 1.14 

CEID-Walk 1.06 0.97 nan nan 1.01 1.01 nan nan 1.00 1.01 nan nan 

CMU-TimeSeries nan nan nan nan 9.78 8.77 9.40 9.63 nan nan nan nan 

CU-nochange 1.01 1.16 1.87 1.60 1.17 1.26 1.34 1.29 1.05 1.11 1.13 0.97 

CU-scenario_high 0.99 1.16 1.87 1.45 1.17 1.27 1.37 1.34 1.05 1.11 1.14 0.99 

CU-scenario_low 1.01 1.12 1.66 1.18 1.17 1.26 1.21 1.03 1.05 1.09 1.07 0.87 

CU-scenario_mid 0.98 1.13 1.83 1.20 1.17 1.28 1.39 1.28 1.05 1.10 1.16 0.97 

CU-select 0.99 1.12 1.66 1.18 1.17 1.26 1.21 1.03 1.05 1.09 1.07 0.87 

Columbia_UNC-SurvCon 1.87 2.17 3.97 4.14 nan nan nan nan nan nan nan nan 

Covid19Sim-Simulator 0.97 0.92 1.32 0.85 nan nan nan nan 1.18 1.13 1.06 0.98 

CovidAnalytics-DELPHI 1.98 1.54 2.63 2.59 nan nan nan nan 2.05 1.87 1.99 1.92 

DDS-NBDS 3.44 5.42 2.20 4.04 nan nan nan nan 3.67 4.19 1.76 2.05 

FAIR-NRAR nan nan nan nan 1.66 1.09 nan nan nan nan nan nan 

Geneva-DetGrowth 0.98 nan nan nan nan nan nan nan 1.11 nan nan nan 

Google_Harvard-CPF nan nan nan nan 1.93 1.74 1.75 1.35 1.63 1.61 1.69 1.66 

IBF-TimeSeries 1.29 0.93 1.09 0.77 nan nan nan nan nan nan nan nan 

IowaStateLW-STEM 1.17 0.86 0.90 0.88 1.31 1.14 1.11 1.10 1.28 1.14 1.20 1.19 

JCB-PRM nan 1.14 2.25 2.79 nan nan nan nan nan 1.38 1.50 1.51 

JHUAPL-Bucky 1.06 1.44 1.94 2.71 1.48 1.75 1.86 1.93 1.22 1.53 1.56 1.52 

JHU_CSSE-DECOM nan nan nan nan nan nan nan nan 1.11 1.07 1.10 1.26 

JHU_IDD-CovidSP 3.14 1.79 1.64 1.30 1.61 1.15 0.98 0.94 1.98 1.21 0.94 0.85 

Karlen-pypm 1.61 1.73 3.16 4.33 nan nan nan nan 1.53 1.65 1.74 1.92 

LANL-GrowthRate 0.88 0.90 1.60 0.85 1.16 1.18 1.10 0.93 1.19 1.12 1.07 0.85 

LNQ-ens1 1.12 1.11 1.15 0.86 0.93 0.95 0.87 0.83 0.94 0.94 0.87 0.74 

OliverWyman-Navigator 1.21 1.02 1.24 nan 1.15 1.08 1.04 nan 1.19 1.03 0.95 nan 

QJHong-Encounter 0.78 0.72 0.69 0.84 nan nan nan nan nan nan nan nan 

RobertWalraven-ESG 1.84 2.33 3.06 2.83 nan nan nan nan 1.33 1.24 1.08 0.96 



 
The misses at the national level are driven by two problems. First, the model did not include the 
total number of cases and failed to account for the decrease in the number of susceptible 
people. Second, it modeled mobility linearly and when the mobility numbers shot up during 
holiday season, it naively forecasted a corresponding increase when it should have been 
clipped. We addressed these issues in the 2021-01-10 release of the national model by 
including a feature for the total number of cases, removing all mobility features except one in the 
national model, and increasing the training window to cover a larger range of outcomes.  

Impact 
 
We develop scientifically-driven machine learning models to accurately predict the spread of 
Covid-19 infections using real-time data. This generates accurate forecasts that are competitive 
with and different from the current set of models in the CDC Covid-19 ensemble. We 
operationalize the forecast to retrain the model and make predictions on new data. We publish 
this data through a web application to help slow the pandemic and prevent future ones. 
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